Strong Oriented Chromatic Number of Planar Graphs without Short Cycles
نویسندگان
چکیده
Let M be an additive abelian group. An M-strong-oriented coloring of an oriented graph G is a mapping φ from V (G) to M such that φ(u) 6= φ(v) whenever −→uv is an arc in G and φ(v)−φ(u) 6= −(φ(t)−φ(z)) whenever −→uv and zt are two arcs in G. The strong oriented chromatic number of an oriented graph is the minimal order of a group M such that G has an M-strong-oriented coloring. This notion was introduced by Nešetřil and Raspaud [Ann. Inst. Fourier, 49(3):1037-1056, 1999].
منابع مشابه
Strong oriented chromatic number of planar graphs without cycles of specific lengths
A strong oriented k-coloring of an oriented graph G is a homomorphism φ from G to H having k vertices labelled by the k elements of an abelian additive group M , such that for any pairs of arcs −→ uv and −→ zt of G, we have φ(v)−φ(u) 6= −(φ(t)−φ(z)). The strong oriented chromatic number χs(G) is the smallest k such that G admits a strong oriented k-coloring. In this paper, we consider the follo...
متن کاملOuterplanar and planar oriented cliques
The clique number of an undirected graphG is the maximum order of a complete subgraph of G and is a well-known lower bound for the chromatic number ofG. Every proper k-coloring of G may be viewed as a homomorphism (an edge-preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natu...
متن کاملAcyclic Edge Colorings of Planar Graphs Without Short Cycles∗
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...
متن کاملAcyclic edge colouring of planar graphs without short cycles
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...
متن کاملList Edge and List Total Colorings of Planar Graphs without 6-cycles with Chord
Giving a planar graph G, let χl(G) and χ ′′ l (G) denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if a planar graph G without 6-cycles with chord, then χl(G) ≤ ∆(G) + 1 and χ ′′ l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics & Theoretical Computer Science
دوره 10 شماره
صفحات -
تاریخ انتشار 2008